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Abstract. We study the effectiveness of the eigenvalue moment method as applied to various 
one-dimensional quanhlm problems which have appeared in the l i t emre .  Of particular interest 
are the radial potential problems (including angular momenhlm effects) -Ze2/(r  CO)  and 
rz +ArZ/(l + p r 2 )  studied by De Meyer and Vanden Berghe (and more recently by Femandez), 
and Witwit, respectively. We also examine the potentials 4.' i gx'/(l+ mgx2), exhaustively 
studied by.Auberson and Boissiere. Finally, we examine the one-dimensional regulated Bohr 
atom with potential -Z/(lxl+ a). well studied by Loudan. and Haines and Robeas. 

1. Introduction 

The eigenvalue moment method (EMM) is a ieneral theory for generating converging lower 
and upper bounds to the low-lying discrete spectrum of arbitrary, bosonic, SchrMmger 
equation Hamiltonians (Handy and Bessis 1985, Handy et a1 1988% b, 1991% b). It has 
enjoyed some notable successes in significantly confirming high-precision eigenenergy 
estimates, as well as in refuting some published results. 

One instance of the former is the application to the superstrong magnetic field regime 
for the quadratic Zeeman effect (Handy et a1 1988a, b), confirming the order-dependent 
conformal transformation analysis of Le Guillou and Zinn-Justin (1983). 

An example of an erroneous result is the Helhan-Feynman hypervirial estimate of 
Lai and Lin (1982) for the x2 + h 2 / ( 1  + gx') potential, particularly for parameter values 
h = 0.1 and g = 2. For this case, their analysis yielded 1.017281 60 for the ground-state 
energy. The EMM bounds gave 1.017 176 Es < 1.017 185 clearly invalidating the Lai and 
Lin estimate, at the fourth decimal place. The EMM bounds were subsequently confirmed 
through a more specialized analysis by Hodgson (1988). 

A second example, although not as severe, is the EMM analysis of the quartic anharmonic 
oscillator, -Z2x2 + x4, as studied by de Saavedra and Buendia (1990). For the Zz = 
5 case, the numerical stability properties of the EMM approach, as discussed by Handy 
(1992), yielded the ground-state energy bounds -3.410 142761 239 82950 < Es < 
-3.410 142761 239 829 35, subsequently reconfirmed (typographical error) by de Saavedra 
and Buendia (1992). 

The EMM approach has been applied to many one- and two-dimensional problems. 
However, until now, it has not been applied to cases involving non-zero angular momentum. 
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The recent analysis by De Meyer and Vanden Berghe (1990), and Femandez (1991) of the 
-Zez/(r+p) radial potential, as well as the work of Witwit (1991) with respect to the 
rz + Arz/(l + gr2) problem, compel us to investigate the relevance of an EMM analysis in 
such cases. We also study another problem investigated by Witwit (1991), that corresponds 
to the potential &&tgx4/(1 + Crgx'); however, our interest is in contrasting the EMM results 
with the Bore1 resummation results of Auberson and Boissiere (1983). Finally, we also 
discuss the EMM analysis for the one-dimensional regulated Bohr atom -Z/(lnl +a!), for 
a! + 0. This problem is of interest because it may suggest alternative EMM representations 
by which to improve the binding energy bounds for the superstrong quadratic Zeeman effect 
(Handy et al 1988% b). 

It is well recognized that bounding theories (those generating lower and upper eigenen- 
ergy bounds) can be very demanding theoretically and computationally. Accordingly, we 
do not expect EMM theory to be computationally competitive with most other eigenenergy 
methods. However, it can be argued that EMM is a reliable and simple theory that can be 
used to test the reliability or accuracy of other faster, but potentially less precise, methods. 
The cases examined in this work support this point of view. 

C R Handy et a1 

2. The -ze2/(r + 0)  potentid 

Consider the Schrodinger equation for a cut-of Coulombic potential, as studied by De 
Meyer and Vanden Berghe (1990) 

where I is the angular momentum, and Ze2 
addition, the radial wavefunction satisfies 

1 is the product of the electrical charges. In 

Y(0) = 0. 

For clarity of presentation, we will h i t  all discussions in this work to the ground-state 
solution within each symmetry class (corresponding to different 1 values). The analysis of 
excited states can be pursued through the c-shift EMM methods of Handy and Lee (1991). 
The present problem will serve  as^ an introduction to EMM theory, which is discussed in 
greater detail in the cited references. 

The basic EMM analysis proceeds by first transforming equation (2.1) into a moment 
equation representation. This is accomplished by multiplying both sides of equation (2.1) 
by r2(r + p )  and integrating by parts with respects to 1,'" r p  dr .  Although the resulting 
moment equation would also be valid for the 1 = 0 and p = 0 cases, our experience 
suggests that no good eigenenergy bounds would result for reasons to be presented 
elsewhere. Accordingly, for these special cases, one would only multiply both sides of 
the corresponding Schrodinger equation by either (r + p )  or rz. That is, the following 
formalism should only be used for 1 > 1 and ,8 #~O. 

There are two important considerations before generating an appropriate moment 
equation. The first is 

rPY(r)dr  < 00 if p 2 -1 (2.3) 
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as follows from equation (2.2) and the exponentially decreasing nature of bound-state 
solutions. The second is that the integration by parts of equation (2.1) will yield boundary 
terms of the type 

where U@) is the pth-order Stieltjes moment u ( p )  = SdtmrPY(r)dr. There will be no 
boundary terms if p 2 -1. for the case p # 0 ( p  2 -2 if p = 0). It then becomes 
appropriate to work with the shifted moments w(p)  u ( p  - l) ,  for p 2 0 (w(p) will 
retain this definition throughout this work). 

The resulting moment equation is 

-2Ew(p+3) = [ W E + ~ I ~ ( P  +2)+ [ ( P + ~ ) ( P +  1) - Y M P  + 1) + P M P  + 1) - Y ~ W ( P )  

(2.5) 

where y = 1(1+ 1) and p > 0. 
This moment equation corresponds to a third-order missing moment problem (Handy and 

Bessis 1985) in which ~ ( 0 ) ;  w(1) and w(2) must be specified before the remaining moments 
can be generated. Clearly, its homogeneous structure allows us to impose the normalization 
condition w(0) + w(1) + w(2) = 1, resulting in a second-order system, with respect to the 
unconstrained missing moments. All references in this work to the unconstrained missing 
moment order will refer to the effective order after imposing the appropriate normalization 
condition. 

Eliminating w(0) we can express the linear dependence of all the moments on the 
unconstrained missing moments ( ~ ( 1 )  and w(2)) through the relations 

2 

w ( p )  = CMdP, OW) (2.6) 

where G(0) w(i). The energy, E ,  dependent 6 f ~ ( p ,  I )  coefficients 
can be easily generated numerically (Handy et a1 1988% b). 

The derived moment equation is valid for all physical solutions. In order to quantize 
the ground-state configurations, we must make use of the positivity properties of such 
configurations so as to define corresponding positivity constraints on the moments. It is a 
well known theorem that bosonic ground-state wavefunctions are of uniform signature and 
can be taken to be positive (that is non-negative, in the r-representation: IVgr(r) 2 0). 
The mathematical theorems fiom the classic moment problem (Shohat and Tamarkin 
1963) prescribe powerful non-linear inequality moment constraints sufficient to quantize 
the ground-state energies (Handy and Bessis 1985)., However, practically, it is too difficult 
to solve these non-linear relations directly. Instead, through the use of a linear programming 
(LP;Chvatal 1983) based cutting~algorithm (Handy et al 1988a, b) it is possible to solve 
these relations; thereby leading to the quantization of the ground states. 

The result of such an LP analysis, for the case p = 1 and 1 = 1 is -0.0831 < Es < 
-0.0824, on the basis of working with a maximum moment order, P-, of 28. For the 
case B = 0.1 and 1 = 1 we obtain -0.1 178 < E, < -0.1148, for P- = 34. Similarly, for 
the case f i  = and 1 = 1 we obtain -0.125 < Eg < -0.120, for P,, = 34. For these 
three cases De Meyer and Vanden Berghe (1990) obtain -0.0828624204409, -0.117535 
and -0.124992 respectively. Clearly then, the EMM results are poor. 

l=O 

1 and G(i # 0) 
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Better bounds can be obtained through the special transformation 

@ ( r )  = q(r)exp(--r) (2.7) 

for E < 0. One must be careful in~choosing such transformations (Handy and Lee 1991). 
The basic guidelines are: in transforming from Q(r)  to @(r) = q(r)R(r) one wants a 
positive function, R(r) > 0, whose asymptotic properties (as determined from a zeroth- 
order JWKB analysis) result in unphysical @(r)  configurations (unbounded functions with 
infinite Stieltjes moments) for unphysical Y(r)s; while for the physical Q(r )  one also wants 
the corresponding @ ( r )  to be physical (with finite Stieltjes moments). 

The corresponding differential equation for @(r)  is 

Repeating the moment equation analysis (absence of boundary terms, etc) the @-moment 
equation becomes (u(p) = Jo*rP@(r)dr w(p + 1)): 

12 - 2.GECp + 2)lw(p + 2) ~ 

= [V - (P + 1)(p + 2 - 2 a P ) l w ( p  + 1) - Hp(p + 1) - Vlw(p) (2.9) 

where p 2 0, and P # 0. Note that this equation involves one less missing moment than 
that for equation (2.5). 

Implementing the linear programming cutting analysis, we obtain the improved results 
in table 1. 

Table 1. Es bounds for -110 f 0). 

10-4 I -0.1~0 c E~ c - 0 . 1 2 ~ 1  p413 
(-0.124992)b 

0.1 1 -0.11759 c Es c -0.11727 [321 
(-0.117535) 

1 I -0.082864 c E .  c 4.08285 1301 . _  
(-.OS28 624204h09) 

15 I -.0228255784915201 < E.  < -0.0228255784915032 1301 . .  
(-0.022825 5784915) 

a P-. 
De Meyer and Vanden Berghe (1990) results. 

The results are clearly superior to the previous bounds. All these results were obtained 
on an IBM RISC 6000 model 560 in double precision. 

For completeness, we discuss the case f i  = 0. Again, we work with the same 
equation (2.8); however, in obtaining a moment equation, it is only necessary to multiply 
both sides of equation (2.1) by rP+'. Once again, we may take p 2 -1, and work with the 
w(q = p + 1) moments, for q > 0. The moment equation becomes 

.. . 
2[(q + 1 ) G E -  11w(q + 1) = [q(q + 1) - 1(1+ I ) lw(q )  for q 2 0. (2.10) 

The above equation corresponds to a zero missing moment problem, since one can set 
w(0) = 1. It then follows that all the other moments are functions of - E .  The physical 
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solution must satisfy this moment relation; however, the ground-state moments must k, 
(strictly) positive. We see that when q = 1 ,  it follows that w(l + 1) = 0, unless the 
coefficient [(l+ I)= - 11 = 0. OnIy for the latter case will there be consistency with 
the requirement that the physical moments must be finite and positive. Accordingly, we 
obtain the correct ground state quantization condition, 

E = -$(1+ 1)-2. (2.11) 

3. The mrz + Xr2/(1 +grz) potential 

Consider the problem 

studied by Roy et al ,(1988) and Witwit (1991). We may transform 
exp(-ar*)Q(r) ( - f i / Z  c a < &/2 (Handy and Lee 1991)), into 

(3.1) 

it through @(r)  = 

where we have chosen LY = f i / 2  The associatkd Stieltjes moment equation is 

~ ( ~ + 4 ) [ E g - ~ g ( p + 5 ) + 2 a g - h ]  

= U ( P  + ?-)[-E - ZLY + k ( p  + 3) - g ( p  + 4 ) ( p  +3) + g l ( l  + 1)) 

+ U ( P ) [ K I  + 1) - ~ ( P  + 2)(P + 1)l. (3.3) 

We require that I, > -1 in order to avoid boundary terms, as discussed in the previous 
section. 

Clearly, the even- and odd-order Stieltjes moments separate.. Because the lowest order 
u(p) moment possible is that for p = -1, we will first examine the consequences of working 
with the odd-order moments. We can set u(2q- 1) = w(q) ,  for q 0. The w(q)  are also the 
moments of a Stieltjes measure: u(2q - 1) 1:” r2q-’QI(r) dr = 1,’” pq-’$QI(..@) dp, 
through a simple change of variables (r ..@). The w(q)  moment equation becomes 

w(q + 2)[Eg - 2g.Jiii(2q+ 4 )  + g f i  - AI = w(q + I)[-E *(2q + 2)  

- g(2q +3)(2v +2) + g l ( l +  111 + w(v)[ l ( l+  1) - 2q(2q + I)] for q > 0. 

(3.4) 
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3.1. Generating bounds for the 1 = euen stales 

The preceding analysis gave very good bounds for the 1 = even states. These are given in 
tables 2 and 3. We compare the EMM bounds with the results of Roy et a1 (1988) for the 
m = 1 case. We do not quote Witwit’s (1991) results since his estimates surpass the bounds 
generated except for one typographical error (we believe) corresponding to A = 1000, 
g = 0.1, and 1 = 10. Also, in order to avoid too large numbers (particularly in the case 
of Witwit’s parameter values) we rescaled the moment equation according to Ess2 5 E:, 
ms4 

Although satisfactory bounds were also generated for the 1 = odd states, these generally 
produced bounds no tighter than O(IO-’); thereby motivating the analysis of the even- 
Stieltjes moment case for equation (3.3), as carried out below. 

The smcture of the moment equation in equation (3.4) offers an explanation as to why 
better bounds for the even angular momentum states are to be expected. In particular, note 
that the coefficient [1(1+ 1) - 2q(2q + l)] will be zero for 2q = l(even). One then has 

~ ( ~ 1 + 2 ) [ E g - 2 g ~ ( l + 4 ) + g ~ - ~ A . l  

m’, s2 = g‘ and As4 = 1. 

= w ( ~ i + i ) [ - ~ - J i i i + 2 J i i i ( i + 2 ) - g ( i + 3 ) ( 1 + 2 ) + g i ( i + ~ ) ~ .  

Since the physical solution must have all its w moments finite and positive, it is clear that 
both coefficients must be of the same signature. A little algebra yields the relations 

(A/g) + &(2l+ 7) 6 Es 6 - 4 ~ 1 -  6g + &&l+ 3)  (3.5) 

or 

(A/g) + &(21+ 7 )  > Es > -4gl- 6g + &(21 + 3)  

for 1 = even. If we equate the bounds, we obtain a condition on the parameters leading to 
an exact solution for.the energy: For A = -[4gz(1 + I) + 2gz + 4g&] then 

A 
g 

E, = - + (21 + 7)&. 

Although we have set 1 = even, the above relation holds for all 1. One can see this by 
repeating the above analysis with respect to the moment equation in equation (3.6). as 
described below. The results agree with those of Roy et a1 (1988, equation (49)). 

3.2. Generating bounds for the 1 = odd states 

The preceding results suggest that the u ( p  = even) moments may be very relevant for 
obtaining more precise eigenenergy bounds for the 1 = odd states. Indeed, this is the case. 
More remarkably, the 1 = 1 states ‘decouple’ from the lodd > 3 states. To see this, note 
that by simply setting u(2q) u(q) (in equation (3.3)). for q > 0 we obtain the moment 
equation 

u h  + 2)tEg - 2g&(21+ 5)  + g& - AI 

= ~ ( ~ + l ) [ - E - ~ + 2 & ( 2 ~ + 3 ) - g ( 2 ~ + 4 ) ( 2 ~ + 3 ) + g 1 ( 1 + 1 ) 1  

+ u ( q ) [ l ( l +  1) - (27 + 1)(2q+ 2)l for q > 0. (3.6) 
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SO long as lodd 3 3, the [1(1+ 1) - (2q + I)(Zq +2)1 coefficient will not be zero for q = 0. 
In such cases, the number of (unconstrained) missing moments (after normalization) will 
be one. However, if 1 = 1, then this coefficient is zero for q = 0. That is, for q = 0 and 
1 = 1, we will have u(2) solely depending on VU), with the ensuing recursion relation not 
involving u(0) at all. Thus, we can really work with the moments u(p + 1) t ( p ) ,  for 
p 3 0. The ensuing zero missing moment equation then becomes 

t ( P  + N E g  - 2gJ i i im + 5)  + g J i i i  - h] = f (P ) [ -E  - f i+ Z f i ( 2 P  + 3) 

-g(2P +WP + 3) + &I+ t ( ~  - 1)[2 - ( 2 ~  + 1)(2p +2)1 for p 3 0. 

(3.7) 

The improved bounds, on the basis of using equations (3.6) and (3.7), are given in tables 2 
and 3. 

4. The $xZ&gx4/(l + agxz)  potential 

4.1. One missing moment formulation 

Consider the potential problem 

gx4 ] Y (x) = EY ( x )  (4.1) 

studied by Auberson and Boissiere (1983) with respects to large-g Bore1 resummation 
methods. Upon multiplying both sides by the denominator expression 1 +rugxz and 
integrating over the real axis with respects to x p ,  there results the following equation for 
the Hamburger moments ( p ( p )  

g [ $ u f l ] ~ ( p + 4 )  = [ E ~ ~ ~ - ~ ~ ~ . ( P + ~ ) + [ ~ ~ ( ~ P + ~ ) ( P + ~ ) + ~ ~ ~ ( P ) + ~ P ( P - ~ ) ~ ~ P - ~ ) .  

J_'," xPY(x)): 

(4.2) 

The symmehic nature of the ground-state wavefunction allows us to simplify the above 
and work directly with Stieltjes moments, u ( p )  = J l m r p - ' / 2 Y ( f i ) d r .  That is, the 
even-order Hamburger moments are equivalent to Stieltjes moments: p ( 2 p )  u ( p ) .  The 
corresponding Stieltjes moment equation becomes 

g[fufl]u(p+Z) = [ E o l g - ~ l u ( p + l ) + [ o r g ( p + 1 ) ( 2 p + l ) + E ] u ( p ) + p ( 2 p - l ) u ( p - 1 ) .  

(4.3) 

It will be noted that this is a one missing moment problem, so long as a # 2, for the 
'negative' potential case. The latter corresponds to a zero missing moment problem and is 
examined in the context of equation (4.4). Usually, if one is able to reduce the number of 
missing moments in a problem, better converging bounds will result. This is possible in the 
present situation. 
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Table 2. Es bounds for r2 + Ar2/(1 +E?),  

1 Es bounds: 1 = 1 (equation (3.6)); 1 = 3 (quation (3.7)) A S 

0.1 

0.1 

0.1 

0.5 

I 

1 

10 

100 

100 

100 

0.1 

0.5 

1 

0.1 

0.1 

1 

0.1 

0.1 

10 

I00 

1 

2 

3 
I 

2 

3 
1 

2 

3 
1 

2 

3 
1 

2 

3 
1 

2 

3 
1 

2 

3 
I 

2 

3 
1 

2 

3 
1 

2 

5.1863730029314 c E, c 5.1863730029316 [301a 
(5.186 33Qb 
7.243961 8404138 c E,  c 7.2439618404260 [30] 
(7.243 927) 
9.29435911086337 c E, c 9.29435911088159 POI 
5.100842 c E, c 5.100865 [30] 
(5.100976) 
7.11890 c E. c 7.11901 1301 . .  
(7.119 005) 
9.131 799 c E. c 9.131 838 r3oi 
5.06428 c E,-< 5.06609 [361 . 
(5.065 610) 
7.0730 c E,  c 7.0744 [301 
(7.073 713) 
9.0787 c E, c 9.0792 
5.893595 152339 19 c Es c 5.89359515233945 1341 
(5.893 494) 
8.177871693435 c E, ~8.177871693485 [30] 
(8.177754) 
10.4292041181366 c Es c 10.429204118 1548 [34] 
6.7042388924777 c E, c 6.7042388924788 [34] 
(6.704090) 
9.2619147807 c Es c 9.261 9147809 [301 
(9.261 812) 
11.7606209626312 c E, c 11.7606209626917 [32] 
5.6503 c E, c 5.6521 [33] 
(5.652 112) I 
7.734 < Ex c 7.736 [30] 
(7.734778) 
9.7875 c Es c 9.7881 [311 
15.8137094349 c E, c 15.8137094352 [34] 
(15.813628) 
21.836092467 c Es c21.836092544 [30] 
(21.836043)b 
27 68830283 c €g c 27.68830288 [30] 
49.38979427 c Es c 49.38979434 [301 
(19.389 615) 
68.8020606 c E, c 68.8020615 1301 
(68.801 562) 
88.0180658 E Et c 88.0180660 
1.7 c E ,  c 14.609 1301 

. .  
(16.611028)" 
18.7186 c E. c 18.7307 1301 . .  
- c Eg c (389 (301 
(5.993565) 
7.9947 c Es c 8.037800 I301 
(7.996048) 

3 9.9969 c E, c 10.0113 [29] 

Pmx. 
Roy et a1 (1988). 
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Table 3. Es bounds for r2 + Ar2/ (1  + g?). 
'2643 

A c 1 E. bounds 

200 0.1 5 
200 0.1 10 
500 ~ 0.1 5 
500 0.1 20 

1000 0.1 I O  
1000 0.1 20 
1000 0.2 5 
1000 0.2 10 

IOOW 0.4 5 
lOOW 0.4 IO 
10000 0.5 5 
10000 0.5 10 

179.483 107 c Es c 179.483 116 [33l3 
311.8601371 < E6 < 311.8616266 [30] 
286.13073 < E6 -i 286.13082 [30] 
914.36540 < Ea < 914.36851 [27] 
713.36081 < Es < 713.36321 [31] 
1312.25006 < Es < 1312.25333 1281 
401.6078 <.Es ~401 .6081  1311 
699.10424 < E6 -i 699.109092 1311 
1280.6254 < Es < 1280.6256 1321 
2242.789 1995 < Es < 2242.7893867 [321 
1275.7838 < E6 c: 1275.7842 [32] 
2228.513255 < E, < 2228530746 1311 

4.2. Zero missing moment formulation 

The zeroth-order asymptotic behaviour (so long as a # 2, for the 'negative' potential case) 
is given by q (x )  + exp(&$yx*), where y (1 f 2/a)"'. A zero missing moment 
problem results upon performing the transformation Q(x) = Y(x)  exp(-$yx2): 

V(P + 1)[2Eag - 1 + Y - kg~(7 .p  + 3) + agyl = Np)[-ZE - Y + 2 ~ ( 2 p  + 1) 2 

- ga(7-p + Z)(ZP + 1)1 - V(P - 1)2P(2P - 1) (4.4) 

where u(p)  = s,'" rp-4 Q(& dr. Note that for the 'negative' potential, when a = 2 then 
y = 0. Thus, equation (4.4) becomes exactly equation (4.3) in this special case. 

In table 4 we tabulate the numerical~results obtained from the moment relations in 
equations (4.3) and (4.4). An examination of the results clearly shows that, in general, the 
zero missing moment results (referenced by a superscripted [O]) are superior to those of the 
one missing moment formulation (as referenced by the [l] notation). Indeed, the a = 0 .1  
results are vastly superior to those quoted by Auberson and Boissiere. This behaviour 
becomes dramatically reversed at a = 1, with some improvement for 01 =.2. 

The superiority of the zero missing moment formulation over the one missing moment 
case suggested e a t  we only implement the former with respect to the 'negative' potential. 
These results are quoted in table 5. Clearly, they are not consistently satisfactory in 
comparison with the Aubersou and Boissiere results. To remedy the situation, we pursued 
a Hausdorff moment formulation, as discussed below. . , 

4.3. Hausdog mment formulation 

The complex singularities for the rational fraction potential in equation (4.1), x = &il/@, 
will affect the tightness of the bounds, particularly as the poles get closer to the real axis or 
ag + CO. It has been shown by Handy er al(1988c) that mapping the singularities to infinity 
improves the tightness of the bounds. This can be done by transforming the preceding 
Stieltjes moment problem into a Hausdorff moment problem through the transformation 
z = x @ / J l  +agx2.  The corresponding differential equation is 
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Table 4. E, bounds for potential tx' + gx4/(l + agx'). 

E, bounds 

0.1 0.1 

0.1 I 

0.1 2 

0.1 5 

0.1 10 

0.1 15 

0.1 20 

1 2 

1 5 

2 0.1 

2 0.2 

2 0.5 

2 1 

2 2  

OS58233730598 c E# c 0.55823373060Of'l 128]n 
(0.558233 73)AB 
0.784971078122 c E, c 0.784971078127[0] I121 
0.784971 0779 c E, c 0.7849710785[1] [28] 
(0.78497) 
0.91140903760013 c E,  ~0.91140903760018~~ [I51 
0.9114090333 < E, < 0.9114090394[1] p.1 
(0.911) 
l.1229875715016 c E,  c 1.1229875715018["1 [a] 
1.12298756 c E, c 1.12298759[1] [28] 
(1.12) 
1.3103034929 c E, c 1.31O3034931Ia] 1281 
1.3103026 c E,  c 1.31030474['1 1281 
(1.30) 
1.426 1759 c E,  c 1.426 176314 [28] 
1.425863 c Ex c 1.4265991'1 P81 
(1.42) 
1.509 1769 c E,  < 1.509 1848'") [28] 
1.5067 c Ea c 1.5123[" [281 
(1.50) 
0.7293 c E, c 0.7343[01 [28In 
0.63 < Es < [281 
(0.731)[AB] 
0.5714 c E, c 0.97671u1 [28] 
(0.784) 
0.54540181240799 c E, c 0.545401 81241027["] 1271 
(0.545 4017) 
0.5689417 < E, c 0.5689418["~[271 
(0.5689417) 
0.60540 c E,  c 0.605711n1[27] 
(0.605 5539) 
0.6246 c Es c 0.64311a1[271 
(0.633078) 
0.5258 < E .  < 0.80~31Olr291 . .  
(0.656 869) 

= PIU. 
('1 one missing moment formulation. equation (4.3). 
["I zero missing moment formulation, equation (4.4). 
AB Aubenon and Boissiere (1983). 

for z E [-1, 11. Note that the singularities at zz = 1 correspond to the essential singularities 
exp(icO(z'/(l - z'))) for the unphysical and physical solutions, respectively. Because of 
these essential singularities, the Hausdoxffmoments u ( p )  E 1: zW(z) dz are infinite and 
finite for unphysical and physical Y (2) configurations, respectively. For the symmetric 
ground state, the associated moment equation is 

[ ( 2 ~  +5) ( 2 ~  +7)lh ( P  +3) = [(ZP +5)  ( 8 ~  + 15) *@/a) (ag)-'Ih ( p  +2) - [3(2p +3) (4p +5) 

- (ag)-' - 2E/aglh(p + 1) + [ ( 2 p  + 1)(8p + 5 )  
- 2E/orglh(p) - 2 p m  - W(p - 1) (4.6) 

where h ( p )  = o(2p). All references in table 5 to '[h]' refer to the numerical implementation 
of the above, except for the case a = 2 which is discussed below. Ohserve that the 
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unconstrained missing moment order for equation (4.6) is 2. Generally, better bounds are 
obtained for the Hausdorff formulation (since it involves mapping the original singularity 
to infinity) than for the zero missing moment formulation, as reflected by the numerical 
results in the cited table. 

Table 5, Es bounds for potential 1.' - Sx4/(l + wsx2) 

2 0.01 
2 0.1 

2 0.2 

2 0.5 

2 1 

2.5 0.1 

2.5 ~ 0.2 

2.5 0.5 

2.5 1 

3 .01 
3 0.1 

Es bounds 

0.49261046 c Es c 0.492610511°1 [28Ia 
0.43458328 c E6 c0.43458331[h1 [201 
0.380 c Es c 0.523[0J [25] 
(0.434583 30)"~ 
0.383654 c Es c 0.383660'h] 1191 
0.1 c Es.c 1.26["] [28] 
(0.383 6567) 
0.2803 c E6 c 0.2829[hI PO] 
(0.281 05) 
0.175 c Es c 0.224Ih1 [21] 
(0.190) 
0.441 2758 c E6 c 0.441 2766[h] [20la 
(0.441 2762) 
0.4036618 c Es c 0.4037374[hl [20] 
0.4026 c Es c 0.4047["l [281 
(0.403 7167) 
0.3417 c Es c O.3486Ihl 1191 
(0.34403) 
0.293 c E6 c 0.365[h] 
(0.303) 
0.49278813286768 c E,  c 0.49278813286771["1 [261 
0.4462748 c Es c 0.44627750~hl [I91 
0.446267 c Es < 0.446282101 1281 
(0.4462756) 

= Pmu. 
Iu' zero missing moment formulation, equation (4.4). 
Fh1 Hausdorff formulation, equations (4.6). and (4.8) for U = 2. 
AB Auberson and Boissiere (1983). 

The limit [Y + 2 is singular for the potential V ( x )  = $2 - g x 4 / ( l  + a g x 2 ) ,  because 
the overall asymptotic behaviour goes from (1 -or- ' )xz to 1 f4g.  The preceding Hansdorff 
transformation results in the equation 

for z E [-I, 11. The resulting moment equation (involving only one unconstrained missing 
moment, h(1)) is 

[(2P + 3)V-p + 5)lh(p + 2) = [6(p'+ 1)(2p + 3) - (Zg)-']h(p + 1) + [ ( E l g )  

- 3(2p + I)'lh(p) + 2p(2p - l ) h ( p  - 1 ) .  (4.8) 

The ensuing analysis for or = 2 is given in table 5. 
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5. The -Z/(pl+ 01) potential 

Our final potential problem is that corresponding to a one-dimensional, regulated, Coulomb 
potential: 

C R Handy et a1 

d2rIr -2 _ _  +- Y(x) = E q ( x )  
d x 2  1x1 + a  (5.1) 

for 2 s 1. This problem, well studied by Loudon (1959) and Haines and Roberts 
(1969), simulates the slowly converging ground-state eigenenergy bounds encountered in 
the superstrong magnetic field limit, a --t 0, for the quadratic Zeeman effect. We examine 
different methods designed to increase the convergence rate of these bounds. 

The basic problem is to determine the ground-state eigenenergy for equation (5.1). The 
desired ground-state configuration is symmetric, with W(0) 0. The ground-state energy 
is clearly negative, thus we take E = --E. 

5.1. Zero missing moment formulation 

Our first approach will be to use the results of Handy and Lee (1991). as summarized 
in the context of equation (2.7), to transform the system into one with as few missing 
moments as possible. The dominant asymptotic behaviour for the unphysical and physical 
configurations is determined by a zeroth-order WKB analysis, or Y(x) --t exp(i&x), for 
x + CO. Taking 

4(x) w ( x )  exp(-Ax) for x > 0 (5.2) 

yields a new representation satisfying the differential equation 

@ ( x )  = o  x > 0. 
d24  d 4  1 - + 2&--+ - 
dn2 dx x + a  (5.3) 

The corresponding Stieltes moment equation (making use of the relation 4'(0) = 
-&4(0)) is 

[2(p + I)&- IMP) =~~rci  IS,,^ + O ~ ~ ~ , ~ I ~ P ( O )  

+ p [ p  + 1 - 2a&Iu(p - 1) + a p ( p  - I ) u ( p  - 2) p > 0. (5.4) 

1, the above equation becomes a zero missing 
moment problem. The zeroth moment is then u(0) = (a& - 1)/(1 - 2& and must be 
positive. The latter condition yields the bounds: $ < & < $, if a < 2; or < f i  < i, 
if a > 2. Note then that for a = 2 the energy becomes E,, =~--E = -0.25. The results in 
table 6 are consistent with this (i.e. results referenced by [Ol). 

5.2. Hausdogformulation I 
Clearly, the preceding results are not too good, particularly for small a. As in the previous 
potential problem, we try to improve things by adopting a Hausdorff formulation in which 
the pole x = -a is mapped to infinity. This can be accomplished through the transformation 
y = x / ( x  +a), for x E IO. CO); therefore, y E [O, 1). This transformation will not be done 
with respect to the rY representation, but with respect to a new representation: 

Upon imposing the normalization 4(0) 

@-(XI  = q ( x )  exp(+&lx[): (5.5) 
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Table 6. -Es bounds for potential -l/(lx[ +e). 
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ci -Es bounds 
1.96 
1 

0.254059 c -Es < 0.254085[01 [I2IL 
0.42991060 c -Es c 0.42991095[h11 I301 
0.429 89 2 - Es c 0.429 931a1 [30] 
0.42876 c -Es c 0.43086[h1’ [24] 
2.123 c - E ,  < 2.132[h11 I301 0.1 
1.9881 c -E, < 2.2201[h;’ [U] 
0.25 c -Es c 3.25[’J [30] 
6.751 c -Es c 8.551[hz1 [30] 0.01 

pmu. 
Lo] Zero missing moment formulation. equation (5.4). 
rh1l Hausdorff formulation, equation (5.9). 
Lhll HausdorfF formulation, equation (5.12). 

The above representation transforms physical and unphysical Y configurations into 
unphysical (infinite moment) @ configurations, with respect to the x-domain, therefore 
becoming unsuitable for implementing a moment analysis (Handy and Lee 1991). That 
is, the physical Y configurations become asymptotically finite 0- configurations (i.e. 
@-(x + i 0 0 )  = finite); while the unphysical Y configurations become asymptotically 
infinite @- configurations (i.e. @-(x = hw) =infinite, for either or both x = iw) .  

However, these asymptotic properties become suitable for a moment’s analysis if we 
work in the y-domain: T(y) = Y(ay / ( l  -y))exp(+&ay/(l - y)) .  An immediate 
result is that physical and unphysical T(y)  configurations have finite and infinite Hausdorff 
moments, respectively. 

It is preferable to work within the domain w = 1 - y ,  for y E IO, 1). The corresponding 
(Q(w) = T(l - w))’differential equation is 

d 2dQ dQ 
dw dw dw w-w -+f&w-+aQ(w)=O 

for w E [0, 1). Before giving the relevant Haussdorff moment equation we make note of 
 several important integral and boundary value relations. First, 

~‘wP12’(w)dw = C 2 ( l ) - S p , o Q ( 0 ) - p u ( p -  1) (5.7) 

ind 

’ d dQ 
WPdU)W*~dW = Q’W - 6,+2,0Q’(O) - PQ(U + P6,+l,OQ(O) + P(P + l)U(P). 

(5.8) 

Second, for the physical configurations: Q(w = 0) = T(y = 1) = @-(x = 00)  finite, 

Combining this with 
and Q(w = 1) T ( y  = 0) @-(x = 0) W(0) # 0. Also, = -;w2Q‘(w). 

@L(x) exp(&x)[&Y(x) + Y’(x)] 

yields 

@i(x  = 0) -(l/,z)I2’(w = 1) = &Y(x = 0) # 0 
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and @ ( x  = CO) = finite constant = -(l/a)OzQ'(w = 0). The latter is important because 
in the process of generating the appropriate Hausdorff moment equation, $xpressions of the 
form WP%~'(W), for w = 0, are encountered. These are then necessarily zero. FinaUy, the 
desired Hausdorff moment equation is 

( p  +2)(p + I)u(p + 1) = a[2&(p + 1) - IIU(P) + [ p  + 1 - LY&IYIT(O) for p 2 o 
(5.9) 

where u(p)  = wPQ(w)dw. Note that both u(0) and Y(0) are arbitrary initialization 
variables (missing moments), that can be normalized to unity: u(O)+Y(O) = 1. The results 
of this analysis are given in table 6, refer to the numerical entries referenced by [hl]. 

5.3. Hausdo#formulation II: moments of negative power 

There is a clear improvement in the bounds obtained through the above Hausdorff 
reformulation, particularly for the case 01 = 0.1. We can even do better by adopting 
the transformation in equation (5.2), but work with inverse moments instead! Specifically, 
we use the same coordinate transformations as before ( y  = x / ( x  +a) ,  w = 1 - y )  to define 

C R Handy et al 

=(w) (a?) exp (-&a- (' - "') for w E [O, 1). (5.10) 
W 

The representation in equation (5.2) will result in physical solutions exponentially going to 
zero as x + CO or w + 0. Likewise, unphysical solutions will go to a finite constant, 
asymptotically (E(0) = finite). Note that, in both cases, at w = 1 the physical and 
unphysical configurations are finite. These facts lead to the observation that the inverse 
moments u(p)  Jd w-PE(w)dw, for p 2 1, will be finite, for the physical case, and 
infinite, for the unphysical case. This is precisely what must be satisfied in order that a 
moment's analysis be implementable (Handy and Lee 1991)! 

The conesponding differential equation is 

d dE dE 
dw dw dw 

w-w=- - 2ff&w- + ffS(w) = 0 (5.11) 

where the associated moment equation is 

- 11V(P +1) = P(P - 1 ) m  + [P - ff&IY'(O) (5.12) 

for p > 0. Note that 

@ ( x )  = exp(-&lxl)Y(x) W ( x )  = -~&o(x) +exp(-&x)Y'(x) 

and W ( x )  = -a-l w2E'(w) (the latter two for positive x ) ,  where Y'(0) 0 is our boundary 
condition. Also observe that u(0) does not contribute in the recursion relation. Instead, 
equation (5.12) corresponds to, effectively, a zero missing moment problem. 

Although in this paper we have not dealt explicitly with the linear programming structure 
of the cutting method, as discussed in detail in the cited references, we do indicate here the 
nature of the linear inequalities considered in using equation (5.12). Specifically, we must 
work with the relations K , , ( W ) [ ~ ~ ~  Ci~-~]*w-'E(w) 2 0, for arbitrag Cs and I 2 0; 
where, U = 0, 1 and Ko(w) w-' - 1. The w-' factor (in the integral 
expression) is critical, otherwise inappropriate u(0) moments would appear. Utilizing these 
relations in the manner outlined in the cited references leads to the results shown in table 6. 

1 while K,(w) 
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6. Summary 

We have applied the eigenvalue moment method to various impoitant one-dimensional 
Schrodinger potential problems. The results show the effectiveness of this approach, when 
combined with appropriate transformations, in generating tight bounds for the ground-state 
energy. Extension to excited states is possible through the methods developed by Handy 
and Lee (1991). All numerical results (except those for the regulated onedimensional Bohr 
atom) were done in double precision on an IBM RISC 6000/560. The higher-order regulated 
Bohr atom calculations were done in double precision on the CRAY. 
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